Carbon nanotubes applications and luminescence-based imaging

Carbon nanotubes applications and luminescence-based imaging

Authors

Raf Vandersmissen

Abstract

Single-walled carbon nanotubes (SWNTs) consist of a monolayer of graphene rolled into a cylinder with nanometer diameters and high aspect ratio. SWNTs have attracted a lot of interest in recent years because of their promising applications in a variety of fields, such as medical science or in-vivo bio-imaging, photonics and (opto)electronics.

An important characteristic of SWNTs in all these applications is their intrinsic luminescence in the shortwave infrared (SWIR) wavelength range (1000 – 1600 nm) [LEF]. In nanotube research, imaging methods based on the intrinsic luminescence are commonly used.

In this white paper, we give an overview of the use and advantages of (single-walled) carbon nanotubes in a variety of applications. Furthermore, we show some examples of how deeply cooled scientific SWIR InGaAs cameras are being used as enabling technologies for luminescence-based imaging of nanotubes.

 

Contact us for more information

 

 

Versatile infrared analysis and reporting software

The Xeneth user interface is common to all the Xenics cameras. This makes it easy for customers to apply their familiarity with this comprehensive product to any new applications, covering wide ranging capabilities in various parts of the IR spectrum.

Learn it once and apply it over and over again.

Karl Niedermeyer, President, Spectro Associates, Inc.